vial-qmk/quantum/vial.c
Pascal Getreuer f5eb9a8e92
Add Repeat Key and Alt Repeat Key to vial-qmk. (#906)
* Repeat Key for vial-qmk.

* Add new keycodes to vial_ensure_keycode.h.
2025-06-29 15:32:04 -06:00

777 lines
26 KiB
C

/* Copyright 2020 Ilya Zhuravlev
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "vial.h"
#include <string.h>
#include "dynamic_keymap.h"
#include "quantum.h"
#include "vial_generated_keyboard_definition.h"
#include "vial_ensure_keycode.h"
#define VIAL_UNLOCK_COUNTER_MAX 50
#ifdef VIAL_INSECURE
#pragma message "Building Vial-enabled firmware in insecure mode."
int vial_unlocked = 1;
#else
int vial_unlocked = 0;
#endif
int vial_unlock_in_progress = 0;
static int vial_unlock_counter = 0;
static uint16_t vial_unlock_timer;
#ifndef VIAL_INSECURE
static uint8_t vial_unlock_combo_rows[] = VIAL_UNLOCK_COMBO_ROWS;
static uint8_t vial_unlock_combo_cols[] = VIAL_UNLOCK_COMBO_COLS;
#define VIAL_UNLOCK_NUM_KEYS (sizeof(vial_unlock_combo_rows)/sizeof(vial_unlock_combo_rows[0]))
_Static_assert(VIAL_UNLOCK_NUM_KEYS < 15, "Max 15 unlock keys");
_Static_assert(sizeof(vial_unlock_combo_rows) == sizeof(vial_unlock_combo_cols), "The number of unlock cols and rows should be the same");
#endif
#include "qmk_settings.h"
#ifdef VIAL_TAP_DANCE_ENABLE
static void reload_tap_dance(void);
#endif
#ifdef VIAL_COMBO_ENABLE
static void reload_combo(void);
#endif
#ifdef VIAL_KEY_OVERRIDE_ENABLE
static void reload_key_override(void);
#endif
#ifdef VIAL_ALT_REPEAT_KEY_ENABLE
static void reload_alt_repeat_key(void);
#endif
void vial_init(void) {
#ifdef VIAL_TAP_DANCE_ENABLE
reload_tap_dance();
#endif
#ifdef VIAL_COMBO_ENABLE
reload_combo();
#endif
#ifdef VIAL_KEY_OVERRIDE_ENABLE
reload_key_override();
#endif
#ifdef VIAL_ALT_REPEAT_KEY_ENABLE
reload_alt_repeat_key();
#endif
}
__attribute__((unused)) static uint16_t vial_keycode_firewall(uint16_t in) {
if (in == QK_BOOT && !vial_unlocked)
return 0;
return in;
}
void vial_handle_cmd(uint8_t *msg, uint8_t length) {
/* All packets must be fixed 32 bytes */
if (length != VIAL_RAW_EPSIZE)
return;
/* msg[0] is 0xFE -- prefix vial magic */
switch (msg[1]) {
/* Get keyboard ID and Vial protocol version */
case vial_get_keyboard_id: {
uint8_t keyboard_uid[] = VIAL_KEYBOARD_UID;
memset(msg, 0, length);
msg[0] = VIAL_PROTOCOL_VERSION & 0xFF;
msg[1] = (VIAL_PROTOCOL_VERSION >> 8) & 0xFF;
msg[2] = (VIAL_PROTOCOL_VERSION >> 16) & 0xFF;
msg[3] = (VIAL_PROTOCOL_VERSION >> 24) & 0xFF;
memcpy(&msg[4], keyboard_uid, 8);
#ifdef VIALRGB_ENABLE
msg[12] = 1; /* bit flag to indicate vialrgb is supported - so third-party apps don't have to query json */
#endif
break;
}
/* Retrieve keyboard definition size */
case vial_get_size: {
uint32_t sz = sizeof(keyboard_definition);
msg[0] = sz & 0xFF;
msg[1] = (sz >> 8) & 0xFF;
msg[2] = (sz >> 16) & 0xFF;
msg[3] = (sz >> 24) & 0xFF;
break;
}
/* Retrieve 32-bytes block of the definition, page ID encoded within 2 bytes */
case vial_get_def: {
uint32_t page = msg[2] + (msg[3] << 8);
uint32_t start = page * VIAL_RAW_EPSIZE;
uint32_t end = start + VIAL_RAW_EPSIZE;
if (end < start || start >= sizeof(keyboard_definition))
return;
if (end > sizeof(keyboard_definition))
end = sizeof(keyboard_definition);
memcpy_P(msg, &keyboard_definition[start], end - start);
break;
}
#ifdef ENCODER_MAP_ENABLE
case vial_get_encoder: {
uint8_t layer = msg[2];
uint8_t idx = msg[3];
uint16_t keycode = dynamic_keymap_get_encoder(layer, idx, 0);
msg[0] = keycode >> 8;
msg[1] = keycode & 0xFF;
keycode = dynamic_keymap_get_encoder(layer, idx, 1);
msg[2] = keycode >> 8;
msg[3] = keycode & 0xFF;
break;
}
case vial_set_encoder: {
dynamic_keymap_set_encoder(msg[2], msg[3], msg[4], vial_keycode_firewall((msg[5] << 8) | msg[6]));
break;
}
#endif
case vial_get_unlock_status: {
/* Reset message to all FF's */
memset(msg, 0xFF, length);
/* First byte of message contains the status: whether board is unlocked */
msg[0] = vial_unlocked;
/* Second byte is whether unlock is in progress */
msg[1] = vial_unlock_in_progress;
#ifndef VIAL_INSECURE
/* Rest of the message are keys in the matrix that should be held to unlock the board */
for (size_t i = 0; i < VIAL_UNLOCK_NUM_KEYS; ++i) {
msg[2 + i * 2] = vial_unlock_combo_rows[i];
msg[2 + i * 2 + 1] = vial_unlock_combo_cols[i];
}
#endif
break;
}
case vial_unlock_start: {
vial_unlock_in_progress = 1;
vial_unlock_counter = VIAL_UNLOCK_COUNTER_MAX;
vial_unlock_timer = timer_read();
break;
}
case vial_unlock_poll: {
#ifndef VIAL_INSECURE
if (vial_unlock_in_progress) {
int holding = 1;
for (size_t i = 0; i < VIAL_UNLOCK_NUM_KEYS; ++i)
holding &= matrix_is_on(vial_unlock_combo_rows[i], vial_unlock_combo_cols[i]);
if (timer_elapsed(vial_unlock_timer) > 100 && holding) {
vial_unlock_timer = timer_read();
vial_unlock_counter--;
if (vial_unlock_counter == 0) {
/* ok unlock succeeded */
vial_unlock_in_progress = 0;
vial_unlocked = 1;
}
} else {
vial_unlock_counter = VIAL_UNLOCK_COUNTER_MAX;
}
}
#endif
msg[0] = vial_unlocked;
msg[1] = vial_unlock_in_progress;
msg[2] = vial_unlock_counter;
break;
}
case vial_lock: {
#ifndef VIAL_INSECURE
vial_unlocked = 0;
#endif
break;
}
case vial_qmk_settings_query: {
#ifdef QMK_SETTINGS
uint16_t qsid_greater_than = msg[2] | (msg[3] << 8);
qmk_settings_query(qsid_greater_than, msg, length);
#else
memset(msg, 0xFF, length); /* indicate that we don't support any qsid */
#endif
break;
}
#ifdef QMK_SETTINGS
case vial_qmk_settings_get: {
uint16_t qsid = msg[2] | (msg[3] << 8);
msg[0] = qmk_settings_get(qsid, &msg[1], length - 1);
break;
}
case vial_qmk_settings_set: {
uint16_t qsid = msg[2] | (msg[3] << 8);
msg[0] = qmk_settings_set(qsid, &msg[4], length - 4);
break;
}
case vial_qmk_settings_reset: {
qmk_settings_reset();
break;
}
#endif
case vial_dynamic_entry_op: {
switch (msg[2]) {
case dynamic_vial_get_number_of_entries: {
memset(msg, 0, length);
msg[0] = VIAL_TAP_DANCE_ENTRIES;
msg[1] = VIAL_COMBO_ENTRIES;
msg[2] = VIAL_KEY_OVERRIDE_ENTRIES;
msg[3] = VIAL_ALT_REPEAT_KEY_ENTRIES;
// The last byte of msg indicates optionally supported features.
msg[length - 1] = (0
#ifdef CAPS_WORD_ENABLE
| (1 << 0) // Bit 0: Caps Word.
#endif
#ifdef LAYER_LOCK_ENABLE
| (1 << 1) // Bit 1: Layer Lock.
#endif
);
break;
}
#ifdef VIAL_TAP_DANCE_ENABLE
case dynamic_vial_tap_dance_get: {
uint8_t idx = msg[3];
vial_tap_dance_entry_t td = { 0 };
msg[0] = dynamic_keymap_get_tap_dance(idx, &td);
memcpy(&msg[1], &td, sizeof(td));
break;
}
case dynamic_vial_tap_dance_set: {
uint8_t idx = msg[3];
vial_tap_dance_entry_t td;
memcpy(&td, &msg[4], sizeof(td));
td.on_tap = vial_keycode_firewall(td.on_tap);
td.on_hold = vial_keycode_firewall(td.on_hold);
td.on_double_tap = vial_keycode_firewall(td.on_double_tap);
td.on_tap_hold = vial_keycode_firewall(td.on_tap_hold);
msg[0] = dynamic_keymap_set_tap_dance(idx, &td);
reload_tap_dance();
break;
}
#endif
#ifdef VIAL_COMBO_ENABLE
case dynamic_vial_combo_get: {
uint8_t idx = msg[3];
vial_combo_entry_t entry = { 0 };
msg[0] = dynamic_keymap_get_combo(idx, &entry);
memcpy(&msg[1], &entry, sizeof(entry));
break;
}
case dynamic_vial_combo_set: {
uint8_t idx = msg[3];
vial_combo_entry_t entry;
memcpy(&entry, &msg[4], sizeof(entry));
entry.output = vial_keycode_firewall(entry.output);
msg[0] = dynamic_keymap_set_combo(idx, &entry);
reload_combo();
break;
}
#endif
#ifdef VIAL_KEY_OVERRIDE_ENABLE
case dynamic_vial_key_override_get: {
uint8_t idx = msg[3];
vial_key_override_entry_t entry = { 0 };
msg[0] = dynamic_keymap_get_key_override(idx, &entry);
memcpy(&msg[1], &entry, sizeof(entry));
break;
}
case dynamic_vial_key_override_set: {
uint8_t idx = msg[3];
vial_key_override_entry_t entry;
memcpy(&entry, &msg[4], sizeof(entry));
entry.replacement = vial_keycode_firewall(entry.replacement);
msg[0] = dynamic_keymap_set_key_override(idx, &entry);
reload_key_override();
break;
}
#endif
#ifdef VIAL_ALT_REPEAT_KEY_ENABLE
case dynamic_vial_alt_repeat_key_get: {
uint8_t idx = msg[3];
vial_alt_repeat_key_entry_t entry = { 0 };
msg[0] = dynamic_keymap_get_alt_repeat_key(idx, &entry);
memcpy(&msg[1], &entry, sizeof(entry));
break;
}
case dynamic_vial_alt_repeat_key_set: {
uint8_t idx = msg[3];
vial_alt_repeat_key_entry_t entry;
memcpy(&entry, &msg[4], sizeof(entry));
entry.keycode = vial_keycode_firewall(entry.keycode);
entry.alt_keycode = vial_keycode_firewall(entry.alt_keycode);
msg[0] = dynamic_keymap_set_alt_repeat_key(idx, &entry);
reload_alt_repeat_key();
break;
}
#endif
}
break;
}
}
}
uint16_t g_vial_magic_keycode_override;
void vial_keycode_down(uint16_t keycode) {
g_vial_magic_keycode_override = keycode;
if (keycode <= QK_MODS_MAX) {
register_code16(keycode);
} else {
action_exec((keyevent_t){
.type = KEY_EVENT,
.key = (keypos_t){.row = VIAL_MATRIX_MAGIC, .col = VIAL_MATRIX_MAGIC}, .pressed = 1, .time = (timer_read() | 1) /* time should not be 0 */
});
}
}
void vial_keycode_up(uint16_t keycode) {
g_vial_magic_keycode_override = keycode;
if (keycode <= QK_MODS_MAX) {
unregister_code16(keycode);
} else {
action_exec((keyevent_t){
.type = KEY_EVENT,
.key = (keypos_t){.row = VIAL_MATRIX_MAGIC, .col = VIAL_MATRIX_MAGIC}, .pressed = 0, .time = (timer_read() | 1) /* time should not be 0 */
});
}
}
void vial_keycode_tap(uint16_t keycode) {
vial_keycode_down(keycode);
qs_wait_ms(QS_tap_code_delay);
vial_keycode_up(keycode);
}
#ifdef VIAL_TAP_DANCE_ENABLE
#include "process_tap_dance.h"
/* based on ZSA configurator generated code */
enum {
SINGLE_TAP = 1,
SINGLE_HOLD,
DOUBLE_TAP,
DOUBLE_HOLD,
DOUBLE_SINGLE_TAP,
MORE_TAPS
};
static uint8_t dance_state[VIAL_TAP_DANCE_ENTRIES];
static vial_tap_dance_entry_t td_entry;
static uint8_t dance_step(tap_dance_state_t *state) {
if (state->count == 1) {
if (state->interrupted || !state->pressed) return SINGLE_TAP;
else return SINGLE_HOLD;
} else if (state->count == 2) {
if (state->interrupted) return DOUBLE_SINGLE_TAP;
else if (state->pressed) return DOUBLE_HOLD;
else return DOUBLE_TAP;
}
return MORE_TAPS;
}
static void on_dance(tap_dance_state_t *state, void *user_data) {
uint8_t index = (uintptr_t)user_data;
if (dynamic_keymap_get_tap_dance(index, &td_entry) != 0)
return;
uint16_t kc = td_entry.on_tap;
if (kc) {
if (state->count == 3) {
vial_keycode_tap(kc);
vial_keycode_tap(kc);
vial_keycode_tap(kc);
} else if (state->count > 3) {
vial_keycode_tap(kc);
}
}
}
static void on_dance_finished(tap_dance_state_t *state, void *user_data) {
uint8_t index = (uintptr_t)user_data;
if (dynamic_keymap_get_tap_dance(index, &td_entry) != 0)
return;
dance_state[index] = dance_step(state);
switch (dance_state[index]) {
case SINGLE_TAP: {
if (td_entry.on_tap)
vial_keycode_down(td_entry.on_tap);
break;
}
case SINGLE_HOLD: {
if (td_entry.on_hold)
vial_keycode_down(td_entry.on_hold);
else if (td_entry.on_tap)
vial_keycode_down(td_entry.on_tap);
break;
}
case DOUBLE_TAP: {
if (td_entry.on_double_tap) {
vial_keycode_down(td_entry.on_double_tap);
} else if (td_entry.on_tap) {
vial_keycode_tap(td_entry.on_tap);
vial_keycode_down(td_entry.on_tap);
}
break;
}
case DOUBLE_HOLD: {
if (td_entry.on_tap_hold) {
vial_keycode_down(td_entry.on_tap_hold);
} else {
if (td_entry.on_tap) {
vial_keycode_tap(td_entry.on_tap);
if (td_entry.on_hold)
vial_keycode_down(td_entry.on_hold);
else
vial_keycode_down(td_entry.on_tap);
} else if (td_entry.on_hold) {
vial_keycode_down(td_entry.on_hold);
}
}
break;
}
case DOUBLE_SINGLE_TAP: {
if (td_entry.on_tap) {
vial_keycode_tap(td_entry.on_tap);
vial_keycode_down(td_entry.on_tap);
}
break;
}
}
}
static void on_dance_reset(tap_dance_state_t *state, void *user_data) {
uint8_t index = (uintptr_t)user_data;
if (dynamic_keymap_get_tap_dance(index, &td_entry) != 0)
return;
qs_wait_ms(QS_tap_code_delay);
uint8_t st = dance_state[index];
state->count = 0;
dance_state[index] = 0;
switch (st) {
case SINGLE_TAP: {
if (td_entry.on_tap)
vial_keycode_up(td_entry.on_tap);
break;
}
case SINGLE_HOLD: {
if (td_entry.on_hold)
vial_keycode_up(td_entry.on_hold);
else if (td_entry.on_tap)
vial_keycode_up(td_entry.on_tap);
break;
}
case DOUBLE_TAP: {
if (td_entry.on_double_tap) {
vial_keycode_up(td_entry.on_double_tap);
} else if (td_entry.on_tap) {
vial_keycode_up(td_entry.on_tap);
}
break;
}
case DOUBLE_HOLD: {
if (td_entry.on_tap_hold) {
vial_keycode_up(td_entry.on_tap_hold);
} else {
if (td_entry.on_tap) {
if (td_entry.on_hold)
vial_keycode_up(td_entry.on_hold);
else
vial_keycode_up(td_entry.on_tap);
} else if (td_entry.on_hold) {
vial_keycode_up(td_entry.on_hold);
}
}
break;
}
case DOUBLE_SINGLE_TAP: {
if (td_entry.on_tap) {
vial_keycode_up(td_entry.on_tap);
}
break;
}
}
}
tap_dance_action_t tap_dance_actions[VIAL_TAP_DANCE_ENTRIES] = { };
/* Load timings from eeprom into custom_tapping_term */
static void reload_tap_dance(void) {
for (size_t i = 0; i < VIAL_TAP_DANCE_ENTRIES; ++i) {
tap_dance_actions[i].fn.on_each_tap = on_dance;
tap_dance_actions[i].fn.on_dance_finished = on_dance_finished;
tap_dance_actions[i].fn.on_reset = on_dance_reset;
tap_dance_actions[i].user_data = (void*)i;
}
}
#endif
#ifdef TAPPING_TERM_PER_KEY
uint16_t get_tapping_term(uint16_t keycode, keyrecord_t *record) {
#ifdef VIAL_TAP_DANCE_ENABLE
if (keycode >= QK_TAP_DANCE && keycode <= QK_TAP_DANCE_MAX) {
vial_tap_dance_entry_t td;
if (dynamic_keymap_get_tap_dance(keycode & 0xFF, &td) == 0)
return td.custom_tapping_term;
}
#endif
#ifdef QMK_SETTINGS
return qs_get_tapping_term(keycode, record);
#else
return TAPPING_TERM;
#endif
}
uint16_t tap_dance_count(void) {
return VIAL_TAP_DANCE_ENTRIES;
}
tap_dance_action_t* tap_dance_get(uint16_t tap_dance_idx) {
if (tap_dance_idx >= VIAL_TAP_DANCE_ENTRIES)
return NULL;
return &tap_dance_actions[tap_dance_idx];
}
#endif
#ifdef VIAL_COMBO_ENABLE
combo_t key_combos[VIAL_COMBO_ENTRIES] = { };
uint16_t key_combos_keys[VIAL_COMBO_ENTRIES][5];
static void reload_combo(void) {
/* initialize with all keys = COMBO_END */
memset(key_combos_keys, 0, sizeof(key_combos_keys));
memset(key_combos, 0, sizeof(key_combos));
/* reload from eeprom */
for (size_t i = 0; i < VIAL_COMBO_ENTRIES; ++i) {
uint16_t *seq = key_combos_keys[i];
key_combos[i].keys = seq;
vial_combo_entry_t entry;
if (dynamic_keymap_get_combo(i, &entry) == 0) {
memcpy(seq, entry.input, sizeof(entry.input));
key_combos[i].keycode = entry.output;
}
}
}
#endif
#ifdef VIAL_TAP_DANCE_ENABLE
void process_tap_dance_action_on_dance_finished(tap_dance_action_t *action);
#endif
bool process_record_vial(uint16_t keycode, keyrecord_t *record) {
#ifdef VIAL_TAP_DANCE_ENABLE
/* process releases before tap-dance timeout arrives */
if (!record->event.pressed && keycode >= QK_TAP_DANCE && keycode <= QK_TAP_DANCE_MAX) {
uint16_t idx = keycode - QK_TAP_DANCE;
if (dynamic_keymap_get_tap_dance(idx, &td_entry) != 0)
return true;
tap_dance_action_t *action = &tap_dance_actions[idx];
/* only care about 2 possibilities here
- tap and hold set, everything else unset: process first release early (count == 1)
- double tap set: process second release early (count == 2)
*/
if ((action->state.count == 1 && td_entry.on_tap && td_entry.on_hold && !td_entry.on_double_tap && !td_entry.on_tap_hold)
|| (action->state.count == 2 && td_entry.on_double_tap)) {
action->state.pressed = false;
process_tap_dance_action_on_dance_finished(action);
/* reset_tap_dance() will get called in process_tap_dance() */
}
}
#endif
return true;
}
#ifdef VIAL_KEY_OVERRIDE_ENABLE
static bool vial_key_override_disabled = 0;
static key_override_t vial_key_overrides[VIAL_KEY_OVERRIDE_ENTRIES] = { 0 };
static int vial_get_key_override(uint8_t index, key_override_t *out) {
vial_key_override_entry_t entry;
int ret;
if ((ret = dynamic_keymap_get_key_override(index, &entry)) != 0)
return ret;
memset(out, 0, sizeof(*out));
out->trigger = entry.trigger;
out->trigger_mods = entry.trigger_mods;
out->layers = entry.layers;
out->negative_mod_mask = entry.negative_mod_mask;
out->suppressed_mods = entry.suppressed_mods;
out->replacement = entry.replacement;
out->options = 0;
uint8_t opt = entry.options;
if (opt & vial_ko_enabled)
out->enabled = NULL;
else
out->enabled = &vial_key_override_disabled;
/* right now these options match one-to-one so this isn't strictly necessary,
nevertheless future-proof the code by parsing them out to ensure "stable" abi */
if (opt & vial_ko_option_activation_trigger_down) out->options |= ko_option_activation_trigger_down;
if (opt & vial_ko_option_activation_required_mod_down) out->options |= ko_option_activation_required_mod_down;
if (opt & vial_ko_option_activation_negative_mod_up) out->options |= ko_option_activation_negative_mod_up;
if (opt & vial_ko_option_one_mod) out->options |= ko_option_one_mod;
if (opt & vial_ko_option_no_reregister_trigger) out->options |= ko_option_no_reregister_trigger;
if (opt & vial_ko_option_no_unregister_on_other_key_down) out->options |= ko_option_no_unregister_on_other_key_down;
return 0;
}
static void reload_key_override(void) {
for (size_t i = 0; i < VIAL_KEY_OVERRIDE_ENTRIES; ++i)
vial_get_key_override(i, &vial_key_overrides[i]);
}
uint16_t key_override_count(void) {
return VIAL_KEY_OVERRIDE_ENTRIES;
}
const key_override_t* key_override_get(uint16_t key_override_idx) {
if (key_override_idx >= VIAL_KEY_OVERRIDE_ENTRIES)
return NULL;
return &vial_key_overrides[key_override_idx];
}
#endif
#ifdef VIAL_ALT_REPEAT_KEY_ENABLE
typedef struct {
uint16_t keycode;
uint16_t alt_keycode;
uint8_t required_mods;
uint8_t alt_required_mods;
uint8_t allowed_mods;
uint8_t options;
} alt_repeat_key_t;
static alt_repeat_key_t vial_alt_repeat_key[VIAL_ALT_REPEAT_KEY_ENTRIES] = { 0 };
static uint8_t unpack_mods5(uint8_t mods5) {
return (mods5 & 0x10) != 0 ? (mods5 << 4) : mods5;
}
static uint16_t alt_repeat_key_normalize_keycode(uint16_t keycode, uint8_t *mods) {
switch (keycode) {
case QK_MODS ... QK_MODS_MAX: // Unpack modifier + basic key.
*mods |= unpack_mods5(QK_MODS_GET_MODS(keycode));
keycode = QK_MODS_GET_BASIC_KEYCODE(keycode);
break;
case QK_MOD_TAP ... QK_MOD_TAP_MAX:
keycode = QK_MOD_TAP_GET_TAP_KEYCODE(keycode);
break;
case QK_LAYER_TAP ... QK_LAYER_TAP_MAX:
keycode = QK_LAYER_TAP_GET_TAP_KEYCODE(keycode);
break;
}
return keycode;
}
static int vial_get_alt_repeat_key(uint8_t index, alt_repeat_key_t *out) {
vial_alt_repeat_key_entry_t entry;
int ret;
if ((ret = dynamic_keymap_get_alt_repeat_key(index, &entry)) != 0) {
return ret;
}
memset(out, 0, sizeof(*out));
out->keycode = alt_repeat_key_normalize_keycode(entry.keycode, &out->required_mods);
out->alt_keycode = alt_repeat_key_normalize_keycode(entry.alt_keycode, &out->alt_required_mods);
out->allowed_mods = entry.allowed_mods;
out->options = entry.options;
return 0;
}
static void reload_alt_repeat_key(void) {
for (size_t i = 0; i < VIAL_ALT_REPEAT_KEY_ENTRIES; ++i) {
vial_get_alt_repeat_key(i, &vial_alt_repeat_key[i]);
}
}
uint16_t alt_repeat_key_count(void) {
return VIAL_ALT_REPEAT_KEY_ENTRIES;
}
static bool alt_repeat_key_mods_match(uint8_t mods, uint8_t required_mods, uint8_t allowed_mods, uint8_t options) {
allowed_mods |= required_mods; // Required mods, if any, are allowed.
// If ignoring mod handedness, bitwise-or low (lhs) 4 bits with upper (rhs) 4 bits.
if ((options & vial_arep_option_ignore_mod_handedness)) {
mods = (mods & 0xf) | (mods >> 4);
required_mods = (required_mods & 0xf) | (required_mods >> 4);
allowed_mods = (allowed_mods & 0xf) | (allowed_mods >> 4);
}
// Check that all required mods are set and all disallowed mods are unset.
return (mods & required_mods) == required_mods && (mods & ~allowed_mods) == 0;
}
uint16_t get_alt_repeat_key_keycode_user(uint16_t keycode, uint8_t mods) {
uint16_t alt_keycode = KC_TRNS;
int8_t best_fit = -1;
keycode = alt_repeat_key_normalize_keycode(keycode, &mods);
for (size_t i = 0; i < VIAL_ALT_REPEAT_KEY_ENTRIES; ++i) {
const alt_repeat_key_t* entry = &vial_alt_repeat_key[i];
const uint8_t options = entry->options;
if (!(options & vial_arep_enabled)) { // Skip disabled entries.
continue;
}
// Search for an entry with matching keycode and mods. If there is more
// than one match, the entry with the most mods wins.
if (entry->keycode == keycode &&
alt_repeat_key_mods_match(mods, entry->required_mods, entry->allowed_mods, options)) {
const int8_t fit = bitpop(entry->required_mods);
if (fit > best_fit) {
alt_keycode = (entry->alt_required_mods << 8) | entry->alt_keycode;
best_fit = fit;
}
}
// If the entry is bidirectional, check for match with the alt keycode.
if (entry->alt_keycode == keycode &&
(options & vial_arep_option_bidirectional) != 0 &&
alt_repeat_key_mods_match(mods, entry->alt_required_mods, entry->allowed_mods, options)) {
const int8_t fit = bitpop(entry->alt_required_mods);
if (fit > best_fit) {
alt_keycode = (entry->required_mods << 8) | entry->keycode;
best_fit = fit;
}
}
// If this entry is the default alt key and allowed mods are satisfied,
// use it if no there is no other match.
if ((options & vial_arep_option_default_to_this_alt_key) != 0 &&
best_fit == -1 && alt_keycode == KC_TRNS &&
alt_repeat_key_mods_match(mods, 0, entry->allowed_mods, options)) {
alt_keycode = (entry->alt_required_mods << 8) | entry->alt_keycode;
}
}
return alt_keycode;
}
#endif